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Substructural logics are a prominent family of non-classical logics whose complete semantics is given
by classes of residuated lattices. While there is a vast literature on all thinkable aspects of propositional
substructural logics (see e.g. monographs [4, 10, 13] and the references therein), the works focusing on
first-order predicate substructural logics are few and far between (with most prominent contributions by
Hiroakira Ono, see e.g. [9]).

Classical predicate logic interprets n-ary predicates as mappings from the n-th power of a given
domain into the two-valued Boolean algebra 2. The idea of replacing 2 by a more general structure is
very natural and was shown to lead to very interesting results: prime examples are the Boolean-valued
or Heyting-valued models of set theory [1] (or even more general models proposed e.g. by Takeuti
and Titani [14] or by Hájek and Haniková [6]). There exists a stream of research, by Mostowski [8],
Rasiowa [11], Sikorski [12], Horn [7], and Hájek [5] to give just a few names, studying logics where
predicates can take values in lattices (with operators) from a certain class.

This talk presents a general framework for studying predicate substructural logics (based on even more
general framework developed in cooperation with Carles Noguera [3]). Given a substructural logic L, we
add the usual axioms of classical/intuitionistic logic to obtain predicate logic L∀m and easily prove its
completeness w.r.t. models built over algebras from Alg∗(L) (the class of residuated lattices providing
the equivalent algebraic semantic of L). It is easy to see that we can restrict to complete lattices from
Alg∗(L) if (but not only if) Alg∗(L) admits Dedekind–MacNeille completions.

In classical logic we can however improve this completeness theorem much more: we can restrict to
models built over the algebra 2 only. Analogous result for substructural logics would be the completeness
w.r.t. models over algebras which are (finitely) subdirectly irreducible relative to Alg∗(L). This however
is rarely the case. We show which axioms/rules has to be added to L∀m to obtain this completeness result
for a rather wide family of substructural logics.

The core of our proof is an appropriate generalization of the classical Henkin method. We present
its modular version which allows to prove not only the desired completeness theorem, but also certain
(natural) form of Skolemization and certain (perhaps not so natural) form of the omitting type theorem (a
joint work with Denisa Diaconescu [2]).

Throughout the talk we will see that sometimes we have to twist the classical notions quite a lot to
obtain the analogs of the classical results. To show that it is not always so bad we conclude the talk by
presenting the (almost) classical proof of the fact that already a very weak variant of Robinson arithmetic
is essentially undecidable when formulated in any substructural logic which still obeys the structural rule
of weakening (a work in progress with Guillermo Badia and Andrew Tedder).
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